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The classic formula for integral entropy production is substantiated by kinetic 
considerations on the example of gas flow in a plane - parallel channel under 

conditions in which the mean free path is comparable with the distance bet - 
ween walls. A system of moment equations for calculating coefficients of 
expansion of the function in velocity polynomials is derived on the basis of 

local entropy production. The obtained system is solved for the flow of a sim- 
ple gas, induced by longitudinal pressure and temperature gradients. It is 
shown by direct calculations that the approximate solution obtained in this 

manner results in the exact fulfilment of the Onsager symmetry relations for 
kinetic coefficients. 

The Chapman- Enskog method, which is applicable in cases when the state of gas 
differs only slightly from equilibrium (e. g., when gradients of macroscopic quantities 

are not large), is widely used for obtaining a closed system of transport equations, i. e. 
equations of hydrodynamics. The last condition reduces to the stipulation of smallness 
of the Knudsen number. At fairly high vacuums the Chapman - Enskog method in its 
classical form becomes inapplicable. 

Problems with two characteristic geometric dimensions are frequent. It is possible 
to construct in that case a generalized Chapman- Enskog method with two Knudsen 
numbers, one of which is small and the other, arbitrary. The physically obvious stipu- 
lation is that in case of smallness of the two Knudsen numbers the generalized method 

converts to the classic Chapman - Enskog method. 

1. We write the Boltzmann equations as 

(1.1) 

where 1 (fa, fa) is the Boltzmann collision integral, and seek a solution of Eq. (1.1) 
of the form 

fa = fGO (1 + rpa> 

where (P= is a small addition proportional to the “longitudinal” Knudsen number (be- 
low for brevity we shall call “longitudinal” and “transverse” Knudsen numbers the ratios 

Kn, = h/S and ,I(n, = h / L , respectively, with S and L being characteristic 
geometric scales of the problem and h representing the mean free path of gas molecu - 

les). 
After linearization we obtain the equation 
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where z and 5 are the longitudinal and transverse coordinates. The sequence of con - 
secutive approximations (with respect toKn,) is of the form 

a!,O 
‘G dx - = I (faO, fJLO) (1*3) 

(1.4) 

The local h4axwell distribution whose parameters are independent of 2 satisfy Eq. 
(I.. 3). We use it as the zero approximation of the sought solution. The solution of Eq . 
(1.4) is vaLid for any arbitrary Knudsen number, and makes it possible to determine the 

macro - properties of flow for arbitrary vacuums at any’ distance from the surfaces boun - 
ding the gas, An exact solution of Eq, (1.4) is only possible in certain special cases [I]. 

Hence it is usual to resort to various approximate methods when considering such prob - 
lems . Here we use the moment method. 

2, First, we shall show that thermodynamics of irreversible processes can be sue - 
cessfully applied to the study of phenomena in which properties of gas in Knudsen 

layers at the gas - solid b&;r interface play a substantial part. 
We use Eq.(l.. 4) for investigating the gas flow in a plane - parallel channel of 

length &’ and width 2L. Multiplying both sides of the equation by gl, and integrating 
with respect to momenta pz of molecules, we obtain 

We multiply both sides of Eq. (2.1) by the Boltzmann constant, sum up over all kinds 
of a molecules, and average over the channel volume. Denoting the entropy produc - 

tion per unit of gas volume in the channel by Acr, , we obtain 

We substitute for fa” the expression 

where P., is the chemical potential of component a and m, is the mass of a mole - 
cule , and introduce the notation Jam (z) and J,” (x) for the density vectors of mass 

and energy fluxes, respectively. Then instead of (2.2) we have 
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b 

t_ kS fS fa’vx, ~~~) dp,dx} = - Aa, 
-L 

J," (4 = ma cPafaovadpJ s 
J,* (x) == -+m, s q4xfa”~r,&2dpa 

Denoting by J,” and J2 the fiUXes of mass and energy averaged over the channel 

cross section, we finally obtain 

(2.3) 

Thus the formula for entropy production in gas differs from the classic formula [3] by the 
additional term related to the properties of gas in the Knudsen layer at the channel wall. 

Formula (2.3) determines the entropy production that is due only to collisions bet - 
ween the molecules themselves. In the considered case the interaction between gas and 

channel walls plays an important part. It also defines a certain amount of entropy pro - 

duction in the gas, which must be added to the right-hand side of formula (2.3). It 

can be calculated as follows. The d~~ibution of molecules impinging on the wall sur - 
face at x = L is fcL+ and of molecules scattered by the latter is fE- (the superscript 
defines the sign of the x - component of molecule velocity). If the law of interaction 

between gas and wall is not specular, these functions are substantially different. Thus 

the molecules impinging on the wall carry an entropy flux of density J” (0) and those 

reflected from the wall, a flux of density .I’ (6) 

J” (0) :z - k 
Ts 

J vfa+ hi f,f4h 
a v,>o 

Js (6) T=; - k c s vfa- In f,-dp, 
a v,<o 

where Ei is the nominal thickness of the wall material in which the described transfor - 
mation of the distribution function takes place, The equation of entropy balance is 

div J” = Au,* 

where Au,,,*is the entropy production in the 6 layer per unit of the layer volume. We 
integrate this equality over the layer volume S6 and relate it to the channel volume . 
For the entropy production in the surface layer of the wall z = L we obtain the formula 

Au, = -!f- Ix 2L ml 
vaxfa- In f,-dpa + $ viL?.fCL+ ln f,f%} 

rx uxco ex>o 

k Ts vx,faln f&, =2L zs 
a 
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The formula for entropy production in the surface layer of the &ll x = --L is of the 
same form. Taking into account the difference of signs of velocity components vr, we 
finally obtain for the entropy production by the collision of gas molecules with the chan- 

nel walls the formula 

The total entropy production per unit of channel volume ACT= Ao, -I- ha, has the 

classic form of the bilinear combination of thermodynamic forces and fluxes. This re- 
sult positively solves the question of validity of application of irreversible process ther- 

modynamics to problem in which’the properties of gas inside Knudsen layers are effec - 
tively taken into consideration. In particular the thermodynamic equations of motion 

retain their form. Thus for a simple gas we have 

and for a binary gas mixture 

(2.5) 

(u1 - us) P = a21 

yo+ m2pm1yqu+l~)=a3++ VCl 
a32 --ii- 

VP 
+ a337ji-- 

qs c(Ja” -;2 "a-), vo= -+- c PClUCZ 

a 

Jam 
ua= -, 

P, 
c, zzz ; 

where q is the vector of heat flux density, ua is the mass velocity of molecules of 

the CC kind, v. is the mean mass velocity of the mixture, p is the density, p is 

the pressure, ca is the concentration of particles of the a kind, and n is the total 

number of particles in a unit of volume. Note that the combination 

vo + m2pm1 y(ul -u2) = + Cn,ua 
a 

constitutes the mean molar velocity of the mixture. 

3. The determination of moments of the kinetic equation poses the question of 
selecting velocity polynomials that are to be used for this purpose. So far this problem 
has not been satisfactorily elucidated in literature. It is, therefore, pertinent to pro - 

pose one of the criteria of such selection. We shall base it on the principles of thermo- 

dynamics of irreversible processes. 
In a stationary case the equation of entropy balance in gas is 

div J” = ACT (3.1) 
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It can be shown that equality (3.1) is equivalent to the relation 

(3.2) 

The exact solution of Eq. (1.4) satisfies also equality (3.2). We stipulate that the ap - 

proximate solution is to satisfy also (3.2). Let us consider a simple gas. We rewrite 

equality (3.2) in the form 

(3.3) 

and seek the solution of Eq. (1.4) in the form of a series in certain polynomials of mo- 
lecule velocity c 

VP= c 
ai (X) Pi(C), C = V 

i If 

2h-T 
7 

Substituting cp into the left - hand side of equality (3.3) we obtain 

i. e. the local entropy production is also represented in the form of a bilineal combina- 
tion of forces ai and fluxes Ji. Hence the local thermodynamic equations of motion 

can also be represented in the form 

(3.5) 

with coefficients Li j satisfying the Onsager symmetry relation. The comparison of 
(3.4) and (3.5) shows that (3.5) are moment equations derived from Eq. (1.4) with 
the use of the same polynomials that were used for approximating function cp, and that 
coefficients Li I 

Lil z _[ f”Pil (Pl) dp 

This method of deriving moment equations seems to be preferable to the conventio- 
nal formal one in which arbitrary velocity polynomials are used, since it a priori en - 

sures the fulfilment of the entropy balance condition. This with the use of equality(3.3) 

makes it possible to repeat the reasoning in Sect. 2 also for the approximate solution of 

cp (C c) s and obtain Eqs . (2.5) and (2.6) with coefficients that satisfy the Onsager 
principle. 

4. Let us apply the indicated method for determining function cp (5, c) and the 
macro - properties of the flow of gas in a plane channel in which small independent lon- 
gitudinal pressure and temperature gradients are maintained. We shall use the method 

of half - space expansions [3 ,4]. Following Maxwell we assume that the molecule dis- 
tribution function becomes discontinuous when V, = 0 in proximity of the channel 
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walls. However we specify that within the volume of gas it must be continuous and 

converts to the known Chapman - Enskog solution. These conditions determine the form 
of approximation of function cp (t, c) 

‘p’ = c, ia,* (X) + c,a,f (X) + (cf - 5/a) a,+ (z) -t 

(c,? - 1/J a,+ (X)1 

For the boundary conditions we use Maxwell’s condition: portion E of molecules 
is diffusely reflected from the walls, while the reflection of the 1 - E portion is spe - 
cular . We omit solution details (see Sect.5) and present the obtained formulas for mean 
velocity and densities of momentum and heat fluxes 

(4.1) 

o’h.z == - m s dpv,<v,rp (x) f” z .rvzp (4.2) 

x l-t-& L K11z Q (x, c,] VA” 

where x and 3 are the coefficients of thermal conductivity and dynamic viscosity of 
gas. In the derivation of these formulas it was assumed that the gas is monatomic, mo- 
lecules were simulated by hard spheres, and functions Fi (2, E) and cDi (s, E) were 
those defined in Sect. 5. 

Let us consider equality (4.1). Its first two terms were analyzed in some detail in 
[ 11, where a similar formula was obtained by the method of elementary solutions with 
the use of the Batnagar - Gross - Crook model. The third term defines the thermal slip 
phenomenon : it consists of three components: 

1) a quantity formally independent (for E # 0 ) on the law of interaction bet - 
ween gas molecules and wall; this part of thermal slip was determined in the known 

work of Maxwell ; 
2) slip not accounted for by Maxwell which is due to the distortion of the distribu- 

tion function of molecules impinging on the wall as the result of their interaction with 
molecules reflected by the wall; 

3) the related to this effect of the appearance of the thermal slip velocity profile 
localized in the Knudsen layer. Because of this the micro - and macroscopic thermal 
slip velocities differ. 

The similarity structure of the second and third terms of the right - hand side of 
equality (4.1) suggests the possibility of considering the first of these as the slip induced 
by a pressure gradient, We shall call it “baroslip” (in [1] this effect is called second 
order slip). 

According to the principle of duality an isothermal heat flux defined in the first set 
of brackets in (4.3) corresponds to the thermal slip. Its component which is independent 
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of the coordinate, as shown in the book by Chapman and Cowling, is the so-called bulk 
isothermal transport heat, The second part of that heat is localized in the Knudsen layer. 

It is also dependent on the law of interaction between gas molecules and wall. The na - 
ture of heatconduction is similasits volume component is defined by the usual thermal 
conductivity coefficient and the correction defines heat transfer in the boundary layer. 

We average (4.1) and (4.3) over the channel cross section and compare the result 
with Eqs. (2.5). We can then write formulas for kinetic coefficients Li, the expressions 

L,, = - XT” I + & Kn, G3 (E, KII~)] 
I 

L,,=g- [ 2’ 1+ f& (E, Knz) + -f?- Knz & (E, Knt)] 
2-E 

~~~ = -f- $- Z’F, (e, Kn2) 

L,, = - &[-$-La + FL”Kn &$-PI (8, Kn2) + $J p2(e, Kn,)] 

where the upper dash denotes values of related functions averaged over the channel cross 
section. According to the principle of Onsager L,, = L21, i.e. the equality 

(4.4) 

must be satisfied. 
Calculations (see Sect, 5) had confirmed that the derived approximate solution 

satisfies that equality (in the limit case of fin, > 1 this result is obtained analyti- 

tally , however, the computation of coefficients was generally effected by numerical 
methods), 

5. Appendix . A detailed description of the procedure for determining the coef- 
ficients of the expansion of function ‘p (5, c) approximated by three velocity polynomials, 
appears in [ 4 1. The method used in this paper does not differ from that, except for the 
number of polynomials used in the approximation. We use the notation 

x1,2 = a,’ -+ a,-, 534 = a,+ I ax-, X5.8 = u2+&-, X7,8 = a,+2 a3 

For the derivation of moments of the kinetic equation we use polynomials 

The solution of the system of 

mula 3 

linear differential equations yields for xi (z) the for- 

where 1 Bij 1 is the determinant with elements 

Bij = y3j sh ajL - y-&yy4j chajL 
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l3 aj t= Y*j Sh UjL - ~ Ygj Gh ajL 

%j = ysj sh ajL -~Y7jChajL, i-f, 2, 3 

where c,~ is a minor of determinant 1 Bij ( obtained by the deletion of the m -th row 

and j -th column. 

We adduce for reference, the values of COII&U& Yij (Ysj = 1) 

y31 = 11.751, ys$I = -19.4759, y$l = -0.4344, y7~ = 13.779 
781 = -9,0647 
ysa = -3.1047, yaa = 3,5278, yes = -0,7640, y72 = 2.5864 

y83 = 2.1941 
yss = 19.5218, yhyas = -25.7145, ~33 = -0.6748, yta = 8.7753 .- 
753 = -6.5084 

The eigenvalues are 

cz = 0.80307 1 J h, a2 = 1.5967 IX, a3 = 3.7789 fh 

Symbol A, denotes the combinations 

A, = 215 P;lnp 

AB=~.--.---=--- 3q 8 
2---e 4 P l/xv 

3rl 8 A,=-&.--. 
4 P 

--zF--. 
I/nv 

The velocity of gas and the heat flux are 

The substi~tion of the expressions for Xi (3 yields 

2 $2 ( pY*j+1+Y7j chujs 

> II 
t?,w= 4 “(T~{+(sA,+ A,)+ 

3 

c (-- l)“+‘AmCmj 

n, j=* 
5 3- & Yaj -f- I’, j) ” “j”) 

The in~oduction of notation 
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Mj=-2 Y4.j + I + Y7j )( 4--n -1 

_ YJj f ’ f YTj 
Ifs > 

e 
Fi=l+2_-e 

c 

. D.. 

j 

(- I)‘* 
( 

4---n 
1/;; V4j + ' + Y7j 

> 
x 

( 

cha.x 
ch ajL 3 ’ + Mj & ajL 

) 

mi =L 
c Ysj + 6Y ej + 2Yej 

> aj ch ajs 
j 

yields formulas (4.1) and (4.3). 

Authors thank B. V. Deriagin for valuable discussions in the course of preparation 
of this paper for printing. 
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